
Lecture 1
Automorphisms and derivations of C[x, y]

Leonid Makar-Limanov

Abstract

Today we describe the group of automorphisms of C[x, y], an algebra of polyno-
mials with two variables over the field of complex numbers. First description of this
group was obtained by Heinrich Jung in 1942. He showed that any automorphism
of C[x, y] is a composition of linear automorphisms x → a1x + b1y, y → a2x + b2y
and triangular automorphisms x→ x, y → y + p(x).

We will also describe all locally nilpotent derivations of C[x, y]. This was done
by Rudolf Rentschler in 1968.

Partial derivatives

Recall that there are two partial derivatives ∂x = ∂
∂x

and ∂y = ∂
∂y

on the algebra

C[x, y]. If α is an automorphism of C[x, y] and u = α(x), v = α(y) we can define partial
derivatives ∂

∂u
and ∂

∂v
relative to u and v. Just write an element of C[x, y] as a polynomial

in u and v and take the corresponding partial derivative. Now we have a lot of partial
derivatives and they all have the following property.

If we apply any partial derivative to a polynomial sufficiently many times we obtain
zero.

Indeed, any f ∈ C[x, y] can be recorded as a polynomial in u and v. Suppose that

degu(f) = k. Then ∂k+1

∂uk+1 (f) = 0 because when we apply ∂
∂u

to f degree relative to u

becomes smaller: degu(∂f
∂u

) = k − 1.

Partial derivatives and Jacobian

Recall what is the Jacobian of two element a and b of C[x, y] :
J(a, b) = axby − aybx.
So J(x, b) = by = ∂y(b) and J(b, y) = bx = ∂x(b).

Let us take now J(u, b). Of course it is uxby − uybx. On the other hand by the chain
rule Jx,y(a, b) = Jx,y(u, v)Ju,v(a, b) and so J(u, b) = Jx,y(u, v)bv.

Since 1 = Jx,y(x, y) = Jx,y(u, v)Ju,v(x, y) and both Jx,y(u, v) and Ju,v(x, y) are elements
of C[x, y] we see that Jx,y(u, v) is a non-zero complex number. We can assume that it is
1: just divide, say u by an appropriate number. Then bv = J(u, b).
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Newton polygons and leading forms.

Newton suggested to represent a polynomial f in two variables by a picture on a
plane which is called the Newton polygon of f . For example N (x + x2 − y3) and
N (1− y + 2x− 3x2y3) are

x

y

x x2

y3

x

y

0

−y

2x

−3x2y3

So to get the Newton polygon for a ∈ C[x, y] mark all points on the integer lattice of the
plane which correspond to monomials of a.

Newton polygon N (a) of a has edges. Take any edge e of N (a) and consider only those
monomials of a which correspond to the points of e. Then we can write a = f + a1 where
N (f) = e and N (a1)

⋂
e = ∅. Polynomial f is called the leading form of a (corresponding

to the edge e). The leading forms can also be defined for the vertices of N (a) in the same
way. The leading form of a can be defined for any direction. Actually, two leading forms
correspond to a direction: there are two parallel lines in a given direction which “touch”
a Newton polygon.

Let us look at our examples.
N (x+ x2 − y3) is a triangle and N (1− y + 2x− 3x2y3) is quadrilateral.
So we have six different leading forms for x+ x2 − y3 : x, x2, −y3; x+ x2, x2 − y3, and
x− y3 and eight leading forms for 1− y + 2x− 3x2y3

Of course the leading forms for different directions can correspond to the same vertex
of N (a).

We will be interested only in forms corresponding to vertices and edges facing infinity
of the first quadrant.

Later we will introduce weight degree functions and non-geometric definition of the
leading forms.
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Lnds and leading forms.

In analysis we talk about derivatives, in algebra we talk about derivations. Say, if we
define ∂f (g) by ∂f (g) = J(f, g) where f is not an image of x or y under an automorphism
we cannot call ∂ a partial derivative, but we can call it derivation. Here is a definition: a
function ∂ on any algebra A over a field K is called a derivation if it is linear, i.e. ∂(k1a1+
k2a2) = k1∂(a1) + k2∂(a2) and satisfies the Leibniz rule: ∂(a1a2) = ∂(a1)a2 + a1∂(a2).

Indeed,
J(f, c1a1 + c2a2) = fx(c1a1 + c2a2)y − fy(c1a1 + c2a2)x = c1J(f, a1) + c2J(f, a2) and
J(f, a1a2) = fx(a1a2)y − fy(a1a2)x = fx(a1ya2 + a1a2y)− fy(a1xa2 + a1a2x) = J(f, a1)a2 +
a1J(f, a2).

Let us fix any direction and denote the corresponding leading form of a ∈ C[x, y] by a.
Since (xiyj)× (xkyl) = xi+kyj+l it is clear that ab = ab for any a, b ∈ C[x, y].
Since J(xiyj, xkyl) = (il − jk)xi+kyj+lx−1y−1 it is also true that J(a, b) = J(a, b) if

J(a, b) 6= 0: product of monomials is never zero, but Jacobian of monomials is zero on
occasions.

Recall that if u = α(x) where α is an automorphism of C[x, y] then ∂u(b) = J(u, b)
is a derivation with an additional property: if we apply this derivation to an element
b ∈ C[x, y] sufficiently many times the result will be zero.

Any derivation on A with this property is called a locally nilpotent derivation, lnd for
short. So any partial derivative of C[x, y] is an lnd.

A derivation ∂ = ∂u is also an lnd (∂u(b) = J(ū, b)). To see this let us present b ∈ C[x, y]
as a sum of several forms. First, b = b̄+ b1. Then b = b̄+ b1 + b2, then b = b̄+ b1 + b2 + b3,
and so on. Let us call elements bi homogeneous. For example, ū is homogeneous.

Since ∂̄ is linear it is sufficient to check that ∂̄ is locally nilpotent on homogeneous
elements.

As we saw above, the Jacobian of two homogeneous elements is also homogeneous (zero
is a homogeneous element). Because of that if b is a homogeneous element and ∂

n
(b) is

not zero then ∂
n
(b) = ∂n(b).

Indeed if b is homogeneous and J(ū, b) 6= 0 then J(ū, b) = J(u, b). Since ∂u is an lnd,
∂mu (b) = 0 for some m. Therefore ∂

n
(b) = 0 for some n ≤ m.

Lnds and degrees.

For an a ∈ C[x, y] its degree relative to x can be defined as the maximal number of
times ∂x can be applied before zero is obtained. Let ∂ be an lnd. We can define for any el-
ement a ∈ C[x, y] a function deg(a) = max(n|∂n(a) 6= 0). It follows from the Leibniz rule
that ∂n(ab) =

∑(
n
i

)
∂i(a)∂n−i(b) which, of course, implies that deg(ab) = deg(a)+deg(b).

It is very easy to check that deg has all familiar properties of the ordinary degree of
polynomials.

Leading forms of u.

When Newton introduced Newton polygons he assumed that the origin is always a
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vertex of the polygon, i.e. that the free term of the polynomial is not zero. In this section
we will make the same assumption to have “nicer” polygons.

Let us choose a direction so that u is a monomial cxiyj. Of course, c 6= 0. Then
∂(xiyj) = J(cxiyj, xiyj) = 0 for the corresponding ∂. So deg(xiyj) = i deg(x)+ j deg(y) =
0 and deg(x) = deg(y) = 0 if both i and j are not zero. Hence both ∂(x) = −cjxiyj−1 = 0
and ∂(y) = cixi−1yj = 0, i.e. i = j = 0 and ū = c. But then u = c which is absurd: the
image of x under an automorphism cannot be an element of C.

Thus either i or j is zero and the Newton polygon of u is a right triangle with the right
angle in the origin.

x

y

xi

yj

Of course, we can get a degenerate triangle which belongs to the x axis or y axis.
Then u = p(x) or u = q(y) and, since u is the image of x under an automorphism,
p(x) = αx + β, α 6= 0; q(y) = γy + δ, γ 6= 0. In the third case ū = λxm + · · · + µyn

and the corresponding edge of N (u) is parallel to the vector 〈−m,n〉. We can rewrite
λxm + · · ·+ µyn as xmp(z) where p(z) is a polynomial in one variable z = x−m1yn1 where
〈−m1, n1〉 is “the shortest” vector with integral components going in the same direction
as 〈−m,n〉.

Since p(z) = µ
∏

(z − ci) by the fundamental theorem of algebra we can write u =
µxm

∏
(z − ci) = µ

∏
(yn1 − cixm1).

Let ∂ be the corresponding lnd. Of course ∂(u) = 0 and if we choose the corre-
sponding deg then deg(u) = 0. It implies that any factor of u also has degree zero. So
deg(yn1 − cixm1) = 0. If we have two different ci’s in the factorization we will also get
deg(xm1) = 0 and deg(yn1) = 0 and deg(x) = deg(y) = 0. But then ux = uy = 0 and u is
a complex number which is impossible. So u = µ(yn1 − cxm1)k and ∂(yn1 − cxm1) = 0.

The end of the story.

Since ∂(yn1 − cxm1) = 0 we have n1y
n1−1∂(y) = cm1x

m1−1∂(x). Hence yn1−1 divides
∂(x) and xm1−1 divides ∂(y).

Put dx = deg(x) and dy = deg(y) where deg is the degree determined by ∂̄. Then
(n1 − 1)dy ≤ dx − 1 and (m1 − 1)dx ≤ dy − 1. Therefore (m1 − 2)dx + (n1 − 2)dy ≤ −2
which is possible only if either m1 or n1 is 1.

If n1 = 1 let us make an automorphism β1 of C[x, y] which is given by x → x and
y → y+ cxm1 . Then (y− cxm1)k 7→ (y+ cxm1− cxm1)k = yk. Therefore β1 “collapses” the
hypotenuse of N (u) to the left vertex (0, k) corresponding to yk. Here are the Newton
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polygons of u and β1(u):

x

y

xm1k

v2

yk

x

y

yk

xm1k

If m1 = 1 let us make an automorphism β2 of C[x, y] which is given by y → y and
x → x + c−1yn1 . Then the hypotenuse of N (u) will collapse to the right vertex (k, 0)
corresponding to xk. Here are the Newton polygons of u and β2(u):

x

y

xk

v2

yn1k

x

y

xk

In both case the Newton polygon became “smaller” than N (u). Using induction on,
say, area ofN (u) we conclude that after several “triangular” automorphisms like β1 and β2
the Newton polygon of the image of u will be either λ1x+ν1 or λ2y+ν2 where λi, νi ∈ C.

Denote the composition of these automorphisms by γ.
If γ(u) = λ1x + ν1 then γ(v) = µ1y + p(x) since J(γ(u), γ(v)) = λγ(v)y is a complex

number.
Similarly, if γ(u) = λ2y + ν2 then γ(v) = µ2x+ q(y) since J(γ(u), γ(v)) = −λ2γ(v)x is

a complex number.
If we make one more triangular automorphism β for which x→ x and y → y−µ−11 p(x)

then βγα(x) = λ1x + ν1 and βγα(y) = µ1y. We also can get rid of ν1 by a triangular
automorphism. Of course, the other case can be treated exactly in the same manner.

Since the inverse of a triangular automorphism is also a triangular automorphism, we
showed that any automorphism is a composition of triangular automorphisms and either
an automorphism x→ λx, y → µy or an automorphism x→ λy, y → µx.

This description is equivalent to the Jung’s description.
H. W. E. Jung, Uber ganze birationale Transformationen der Ebene , J. Reine Angew.

Math. 184 (1942), 161-174.
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The idea to use lnd for a description of automorphisms belongs to Jacques Dixmier.
See Dixmier, Jacques Sur les algèbres de Weyl. (French) Bull. Soc. Math. France 96,
(1968), pages 209-242, where the group of automorphisms of the first Weyl algebra is
described.

It was used by Rudolf Rentschler: Rentschler, Rudolf Opèrations du groupe additif sur
le plan affine. (French) C. R. Acad. Sci. Paris Sèr. A-B 267, (1968), pages A384-A387,
to describe all generalized shifts of the plane and the group of automorphisms of C[x, y].
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Now we develop a bit of theory.

Definitions, notations and technical lemmas.

Here are some necessary notions and facts.

Let A be a C-algebra. A C-homomorphism ∂ of A is called a derivation of A if it
satisfies the Leibniz rule: ∂(ab) = ∂(a)b+ a∂(b).

A derivation is irreducible if ∂(A) does not belong to a proper principal ideal. (So
according to this definition zero derivation is irreducible!)

Any derivation ∂ determines two subalgebras of A. One is the kernel of ∂ which is
usually denoted by A∂ and is called the ring of ∂-constants.

The other is NilA(∂), the ring of nilpotency of ∂. It is determined by NilA(∂) = {a ∈
A|∂n(a) = 0, n >> 1}. In other words a ∈ NilA(∂) if for a sufficiently large natural
number n we have ∂n(a) = 0.

Both A∂ and NilA(∂) are subalgebras of A because of the Leibniz rule.

We will call a derivation locally nilpotent if NilA(∂) = A.
The best examples of locally nilpotent derivations are the partial derivatives on the

rings of polynomials C[x1, ..., xn].

With the help of a locally nilpotent derivation acting on A, we can define a function
deg∂ by deg∂(a) = max(n|∂n(a) 6= 0) if a ∈ A∗ = A \ 0 and deg∂(0) = −∞.

Then the function deg∂ is a degree function, i.e.,
deg∂(a+ b) ≤ max(deg∂(a), deg∂(b)) and
deg∂(ab) = deg∂(a) + deg∂(b).

Two locally nilpotent derivations are equivalent if the corresponding degree functions
are the same.

By definition deg∂ has only non-negative values on A∗ and a ∈ A∂ \ 0 if deg∂(a) = 0.
So it is clear that the ring A∂ is factorially closed; i. e., if a, b ∈ A∗ and ab ∈ A∂, then
a, b ∈ A∂.
(In the literature subrings with this property are called saturated multiplicatively closed
subrings.)

Let F be the field of fractions of A. Any derivation ∂ can be extended to a derivation
on F by the “calculus” formula ∂(ab−1) = (∂(a)b − a∂(b))b−2. We will denote this ex-
tended derivation also by ∂.

Lemma 1. Let ∂ be a locally nilpotent nonzero derivation of A. Then there exists an
element t ∈ F for which ∂(t) = 1 and NilF (∂) = F ∂[t].

7



Proof. ∂ is a nonzero derivation so A 6= A∂ and there exists an a ∈ A\A∂. Put r = ∂n(a)
where n = deg∂(a)− 1. Then r /∈ A∂ and ∂(r) ∈ A∂. If t = r

∂(r)
then ∂(t) = 1. �

It is clear that F ∂[t] ⊂ NilF (∂). We will use induction on deg∂(a) = n to show the
opposite inclusion.

Lemma 2. NilF (∂) = F ∂[t].
Proof. If a ∈ F and deg∂(a) = 0 then a ∈ F ∂ by definition. Let us make a step from
deg∂(a) = n−1 to deg∂(a) = n. If deg∂(a) = n then deg∂(∂(a)) = n−1 and by induction
∂(a) =

∑n−1
i=0 ait

n−1−i for some ai ∈ F ∂.
Take f =

∑n−1
i=0 (n − i)−1aitn−i. Then ∂(f) = ∂(a). So ∂(a − f) = 0 which means that

a = f + an where an ∈ F ∂.

Remark 1. It is clear that deg∂ and degt are the same functions. This, of course,
gives a proof of the properties of deg∂ mentioned above.

Remark 2. A∂ is algebraically closed in A. Indeed, if a /∈ A∂ then it is represented
by a polynomial of positive degree in t and p(a) also has a positive degree in t for any
nonzero polynomial p.

Remark 3. Similarly, F ∂ is algebraically closed in F and F = F ∂(t). Therefore the
transcendence degree of F ∂ is the transcendence degree of F minus one: trdeg(F ∂) =
trdeg(F )− 1. Hence trdeg(A∂) = trdeg(A)− 1.

Lemma 3. F ∂ is the field of fractions of A∂.
Proof. This proof was suggested by Ofer Hadas. Let a, b ∈ A and r = ab−1 ∈ F ∂. As-
sume also that deg∂(a) is minimal possible for all presentations of r as a fraction. Now
∂(r) = (∂(a)b−a∂(b))b−2 = 0. So ab−1 = ∂(a)∂(b)−1 and deg∂(∂(a)) < deg∂(a). To avoid
a contradiction we have to assume that deg∂(a) = 0, so a and b are in A∂. �

Lemma 4. A factorially closed subalgebra A of a ring Cn of polynomials which has the
transcendence degree one is a polynomial ring in one variable.
Proof. Consider a polynomial u of the smallest positive degree in A. Let us assume that
p ∈ A is irreducible. Since A is a subalgebra of transcendence degree one, u and p are
algebraically dependent. Let Q(u, p) = 0 be an irreducible dependence between them.
Then Q(u, p) = Q(u, 0) + pQ1(u, p). Therefore Q(u, 0) =

∏
(u − λi), λ ∈ C is divisible

by p. Elements u − λ are irreducible for any λ ∈ C because otherwise we will have an
element in A with the degree smaller then the degree of u. Since p is irreducible it implies
that p = c(u − λ) for some c ∈ C∗ and λ ∈ C. Since each element of A is a product of
irreducible elements this subring should be C[u]. �
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Description of lnds of C[x, y].

Now we will find all locally nilpotent derivations of C[x, y]. If ∂ ∈ Nil(C[x, y]) \ 0 then
C[x, y]∂ is a subalgebra of transcendence degree one which is a UFD since C[x, y] is a
UFD and C[x, y]∂ is factorially closed. Because of that C[x, y]∂ = C[u] (Lemma 4).

Now let us show that D(f) = J(u, f) is an lnd which is equivalent to ∂. Extend ∂
on C(x, y). Then NilC(x,y)(∂) = C(u) and C[x, y] ⊂ C(u)[t] where ∂(t) = 1 and t =
r

q(u)
, r ∈ C[x, y]. Therefore x =

∑
xit

i, y =
∑
yjt

j where xi, yj ∈ C(u) and 1 =

J(x, y) = J(u, t)Ju,t(
∑
xit

i,
∑
yjt

j). Now, J(u, t) = J(u, r
q(u)

) = J(u,r)
q(u)

∈ C(u)[t] and

Ju,t(
∑
xit

i,
∑
yjt

j) ∈ C(u)[t]. Hence these two polynomials in t have degree zero and
J(u, r) ∈ C[u], J(u, t) ∈ C(u). Thus D is an lnd which is equivalent ∂.

After that, description of u is as in the proof of Jung theorem. Indeed, we checked
that if D(f) = J(u, f) is an lnd then the Newton polygon of u is a right triangle with the
right angle in the origin and that the leading form which corresponds to the hypotenuse
is either µ(y − cxm1)k or µ(yn1 − cix)k where µ ∈ C. In any case, we can make an
automorphism which will make this triangle smaller. As before we can conclude that
there is an automorphism γ such that the Newton polygon of γ(u) is not a triangle
anymore and belongs to one of the coordinate axes. If γ(u) = p(x) then u = p(γ−1(x))
and since C[x, y]∂ = C[u] we can assume that u = γ−1(x). Similarly, if γ(u) = p(y)
then u = p(γ−1(y)) and we can assume that u = γ−1(y). Therefore u is a generator of
C[x, y], i.e. there exists v ∈ C[x, y] such that C[u, v] = C[x, y]. Since we can assume
that J(u, v) = 1 the derivation D is just the partial derivative relative to v. Since ∂ is
equivalent to D we have ∂(v) = p(u) and ∂ = p(u) ∂

∂ v
.

Finally, if ∂ is an lnd of C[x, y] then αT = exp(T∂) =
∑∞

i=0
(T∂)i

i!
where T is “time”

defines a shift of the plane C2 in a direction of a line which is isomorphic to a straight
line: a point (x, y) moves to the point (x, y)T = (αT (x), αT (y)).

For example, if ∂(f) = J(x + y2, f) then (x, y)T = (x − 2Ty − T 2, y + T ) and if we
consider all trajectories of point the plane will be covered by lines isomorphic to, say, the
x axis.

We will see in the third lecture that if a line which is isomorphic to the x axis is
embedded into a plane then it can be included as one of the trajectories in a similar
picture.
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